工学 >>> 光学工程 >>> 光电子技术 光信息技术 光学仪器及技术
搜索结果: 16-30 共查到光学工程 界面相关记录48条 . 查询时间(0.091 秒)
近日,我所光电材料动力学特区研究组(11T6组)吴凯丰研究员团队通过合理构建无机纳米晶-多环芳烃分子模型体系的能级结构,结合超快时间分辨光谱技术,揭示了电荷转移态介导的三线态能量转移(CT-mediated TET)模型,在无机/有机界面三线态能量转移动力学研究方面取得新进展。近年来,无机纳米晶敏化有机分子三线态开始广受关注,主要体现为:一、纳米晶通过改变形貌、尺寸和成分可轻易实现宽光谱调谐,且较...
传统的嵌入型锂电池正极材料,如橄榄石(LiMPO4)、层状(LiMO2)及尖晶石(LiM2O4)等,虽然具有优良的电化学可逆性,但是其少量电子转移(0.5-1个)的短板极大限制了它们的电荷储存容量和能量密度,已不能满足可移动电子设备、电动汽车及智能电网等应用领域的快速发展。而基于多电子转换反应的氟或硫基正极因其极高的理论比容量和能量密度(例如:Li-FeF3, 713 mAh g-1, 1950 ...
传统锂离子电池均采用液态电解质,而液态电解质本身的性质直接影响到其安全性能。固态锂电池能够解决一部分安全问题。但由于固态颗粒间的电导率低,固态电池中的电导率一直不理想,直到关于运用MOF作为框架主体,锂离子液体作为离子传输客体的类固态电解质(MOF-IL)的研究报道,给固态电池开辟了新的研究视角。近日,北京大学深圳研究生院新材料学院潘锋教授团队基于这一视角,进一步提高了该类固态电解质的安全性能及其...
北京大学深圳研究生院新材料学院潘锋教授课题组与国际知名实验室紧密,将电化学方法与称量原子/分子重量石英微天平(EQCM)、观察原子尺度形貌的原子力显微镜(AFM)和监测产生极微量气体组成的微分质谱(DEMS)进行巧妙协同策略,实现了定量监测在不同电位下电极界面组分,从不同角度对SEI膜的形成过程进行原位和联动的追踪测量。团队经过近5年的共同努力,在原子尺度上原位探测锂电池负极界面构建SEI膜机理研...
近日,北京大学物理学院量子材料科学中心的王健教授与谢心澄院士、冯济教授,和北京师范大学的刘海文研究员、武汉国家强磁场科学中心王俊峰研究员以及中科院合肥强磁场科学中心的田明亮研究员、郗传英博士等人合作,通过使用铅的条状非公度相作为铅膜和硅衬底的界面,用超高真空分子束外延技术成功制备出一种宏观面积的、塞曼保护的新型二维超导体。系统的低温强磁场实验表明,该体系的超导电性可存在于超过40特斯拉的平行强磁场...
中国科学技术大学杜江峰院士领导的中科院微观磁共振重点实验室在氧化物界面物理研究方面取得重要进展,该室量子电子学小组程光磊教授与合作者提出了二维氧化物界面量子振荡的一维起源,并完成了实验验证,相关工作发表在2018年2月14日的《物理评论快报》上[Phys. Rev. Lett. 120, 076801 (2018)]。氧化物界面是最近十五年兴起的新型材料系统,尤其是基于钛酸锶的二维电子系统具有超导...
电动车和手机的下一代锂电池将会选择能量密度更高和安全性更好的全固态锂离子电池。我们国家为了加速新材料和全固态锂离子电池研发,“十三五”期间首次设立了“材料基因组技术”国家重点研发计划,并且希望通过材料基因组的高通量计算、合成、检测及数据库(大数据的机器学习和智能分析)的新理念和新技术加速全固态锂离子电池的研发,设立了“基于材料基因组技术的全固态电池研发”国家重点专项,该重点专项由北京大学深圳研究生...
铁电材料由于具有铁电、介电、压电、热释电等丰富的物理性能,被广泛应用于非易失性铁电存储器、电容器、制动器、热释电探测器等电子器件中。为满足电子器件小型化的发展需求,铁电体需要以低维薄膜的形式集成到电子器件中。但是,随着薄膜厚度的减小,在异质界面去极化场的作用下,铁电极化会显著降低甚至消失,如何保持甚至增强超薄铁电体的极化是该领域长期以来面临的基础性科学难题。
氮化镓(GaN)基高电子迁移率晶体管(HEMT)具有高电流密度、高开关速度和低导通电阻等优点,受到人们的广泛关注,使得GaN基HEMT器件成为下一代功率器件强有力的竞争者。然而,GaN器件与传统Si基器件不同,很难通过热氧化的方法获得低界面态密度的绝缘介质层。因此,如何降低界面态密度已经成为GaN基器件研究和应用的挑战之一。
近年来,全球癌症发病形势愈发严峻,发病率与死亡率呈持续上升趋势。癌症转移是临床上导致癌症治疗失败和癌症患者死亡的最大原因,因此癌症转移的早期诊断与治疗可以大幅度提高病人的治愈率,是决定很多患者生存率的一个关键因素。癌症病人血液中循环肿瘤细胞(CTC)分离技术的发展有望实现对肿瘤病人的早期精确的无侵入式诊断,并在预后判断、疗效评价和个体化治疗方面发挥重要的指导作用。尤其如能实现CTC的高纯度、高活性...
考虑磁场对固液界面表面电荷性质的影响与微纳流体系统的流体阻力相关,本文采用原子力显微镜(AFM)研究了静磁场对去离子水黏度以及高硼硅玻璃-去离子水界面表面电荷性质的影响,并分析了静磁场对去离子水性质影响的机理。研究结果表明,将去离子水静置于磁场强度为0~0.6 T的静磁场下30 min时,去离子水的黏度随磁场强度的增加而减小,而高硼硅玻璃-磁化水界面的表面电荷密度随磁场强度的增加而增加;静磁场对去...
采用机械振动辅助激光熔覆复合改性新工艺,在45钢表面制备了单道Fe-Cr-Si-B-C合金涂层。借助X射线衍射(XRD)、扫描电镜(SEM)和能量分散谱(EDS)分析了熔覆层的物相组成、微观结构和元素分布,通过HVS-1000型显微硬度计测试了熔覆层的显微硬度。结果表明,熔覆层主要由α-(Fe, Cr)固溶体、M7C3(M=Fe、Cr)碳化物、Fe2B硼化物和少量Fe0.9Si0.1组成。在机械振...
最近,国际杂志Semiconductor Today 专文报道了日本索尼公司和中国科学院苏州纳米技术与纳米仿生研究所在“超低电阻”键合工艺开发方面的最新成果。基于分子束外延生长的重掺杂的P+型GaAs和n+型InP键合材料,避免了n型GaAs和n型InP键合所产生的二极管整流特性。通过低能氩离子体键合界面处理,在高真空(<10-5Pa)键合环境中实现了高机械强度的室温键合。室温键合工艺还解决了常规...
2014年8月12日,以李亚栋院士为组长的10位专家对中国科学院苏州纳米技术与纳米仿生研究所陈立桅研究员主持的中科院、国家外专局项目“纳米生物界面研究创新团队”项目进行了验收。
功能生物界面由于其呈现出的独特功能引起研究者的极大兴趣,而微纳尺度结构是其关键结构基元,它们是界面特定功能的内在本质. 然而直到目前描述刻画特定功能的整个形成过程依旧困难. 越来越多的证据开始支持功能生物界面上的“微纳尺度构建-功能-力学耦合”的论点. 本文重点介绍不同微纳尺度复合功能生物界面上的“形貌和力学耦合行为”,以获得对微米纳米复合结构更好的理解. 还介绍了自然界中生物体表气/液/固三相生...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...