工学 >>> 力学 农业工程 林业工程 工程与技术科学基础学科 测绘科学技术 材料科学 矿山工程技术 石油与天然气工程 冶金工程技术 机械工程 光学工程 仪器科学与技术 动力与电气工程 能源科学技术 核科学技术 电子科学与技术 信息与通信工程 控制科学与技术 计算机科学技术 化学工程 纺织科学技术 印刷工业 服装工业、制鞋工业 轻工技术与工程 食品科学技术 土木建筑工程 水利工程 交通运输工程 船舶与海洋工程 航空、航天科学技术 兵器科学与技术 环境科学技术 安全科学技术 工业设计
搜索结果: 1-15 共查到工学 AFM相关记录42条 . 查询时间(0.237 秒)
钠金属电池(SMBs)具有低成本、高理论比容量(1166 mAh g-1)和低氧化还原电位(相对于SHE - 2.71V)的特点,使其极具潜力应用于下一代二次电池。然而,SMBs面临着一系列挑战,包括由于Na沉积行为不均匀而导致的枝晶生长,高活性Na金属阳极与电解质之间的界面副反应引起的电解质分解并产生易燃气体,从而引发泄漏和燃烧,造成重大的安全隐患。
阻燃、耐高温热管理材料在航空航天、建筑和日常生活中具有广泛的应用。气凝胶作为一类超低密度和超低热导率的多孔材料,在耐高温热管理材料的减重、瘦体等方面独具优势。然而高分子基气凝胶材料长期服役耐温极限一般在500℃以下,而无机氧化物等新型气凝胶,其高温下的结构稳定性、力学性能、以及密度与热导率等综合性能还待提升。此外,传统气凝胶由于极高的孔隙率导致其脆性大、难以二次加工等,因此如何实现对结构复杂的异型...
中国科学院上海应用物理研究所专利:一种提高单个DNA分子AFM图像对比度的方法
铝硫(Al-S)电池由于其高体积能量密度、高安全性、低成本以及Al和S元素的高丰度而被认为是可以满足日益增长储能需求的替代品。然而,铝硫电池仍存在许多挑战,如多硫化物转化动力学缓慢、电解液兼容性差和潜在的铝腐蚀和枝晶形成等问题。当前大多数研究都集中在设计或开发合适的基体材料或优化兼容的电解质上,以寻求高性能的Al-S体系,包括:i) 设计高导电性的基体来提高电极电导率;ii) 开发杂原子掺杂的多孔...
搭配高电压高镍三元层状正极(LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.9))和锂金属负极的锂金属二次电池(LMBs)体系被视为下一代最具前景的高能量密度储能器件之一。然而,在传统碳酸酯类电解液中,锂金属负极会出现严重的锂枝晶生长和“死锂”堆积现象,其不仅会导致电池库伦效率低和循环稳定性差,还会刺穿隔膜导致电池发生内短路,进而出现电池燃烧爆炸现象,严重危害到使用者的生命和财产安全。...
搭配高电压高镍三元层状正极(LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.9))和锂金属负极的锂金属二次电池(LMBs)体系被视为下一代最具前景的高能量密度储能器件之一。然而,在传统碳酸酯类电解液中,锂金属负极会出现严重的锂枝晶生长和“死锂”堆积现象,其不仅会导致电池库伦效率低和循环稳定性差,还会刺穿隔膜导致电池发生内短路,进而出现电池燃烧爆炸现象,严重危害到使用者的生命和财产安全。...
2023年来,锂离子电池在技术领域不断突破,能量密度已经接近极限,但仍远远不能满足新能源汽车及其他电子设备对高能量密度储能器件的需求。因此,发展更高能量密度的电池体系是亟需面临解决的难题。锂硫电池理论能量密度高达2600 Wh kg-1,大约是锂离子电池的6倍,在电子产品、动力电池等领域具有广阔的应用前景。但硫正极较低的电导率,缓慢的锂离子传输动力学以及多硫化物的穿梭效应导致了电池容量的快速衰减,...
在全球范围内,泥炭地面积约为4亿公顷,是重要的有机碳和氮库,其碳和氮储量分别占整个陆地生态系统总储量的30%和10%。由于泥炭地碳、氮迁移转化过程中引起大量温室气体氧化亚氮(N2O)的产生和排放,因而,泥炭地自然和半自然生态系统被认为是大气N2O的重要非农业源。但是,目前对泥炭地自然和半自然生态系统N2O排放强度的空间变异及其主要控制因素仍不清楚,严重制约了区域或全球尺度泥炭地N2O排放总量的准确...
随着现代信息技术的快速发展以及广泛使用(如物联网、大数据等),二次电池的高存储能力、安全可靠性至关重要。金属锂电池由于其较高的比能量被认为是下一代最有潜力的高比能电池体系;然而高活泼的金属锂负极与液态电解液间的副反应所带来的安全隐患,使得金属锂电池的实际应用进展缓慢。相比于易燃的液态电解液,固态电解质安全性更高;但其离子电导率较差,一般都需在高温下运行(60-80°C),电池很难在室温下正常工作。...
近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。...
纳米纤维可以显著提高材料的力学性能,被认为是制备混合水凝胶的理想刚性增强材料。但不透明纳米纤维在水凝胶基体中的层状沉积或不均匀分布会导致混合水凝胶的机械性能变低,透明度变差。在不影响透明性的前提下,制备一种坚韧、可拉伸、均匀的纳米纤维增强离子导电水凝胶仍然是一项巨大的挑战。
纳米纤维可以显著提高材料的力学性能,被认为是制备混合水凝胶的理想刚性增强材料。但不透明纳米纤维在水凝胶基体中的层状沉积或不均匀分布会导致混合水凝胶的机械性能变低,透明度变差。在不影响透明性的前提下,制备一种坚韧、可拉伸、均匀的纳米纤维增强离子导电水凝胶仍然是一项巨大的挑战。
清华大学邹贵生、刘磊课题组和朱宏伟课题组等研究人员受贝壳珍珠层启发,基于超快激光增-减材复合制造技术,将液态金属共晶镓铟合金(EGaIn)与适量银薄膜混合构筑了砖-泥式固液双相薄膜用于柔性应变传感。
中国科学院苏州纳米技术与纳米仿生研究所马昌期课题组近期开发了凹版印刷银线透明电极。利用凹版印刷法制备银线电极,具有可大批量低成本制备、可图案化、大面积均匀性好、光电性能优异(与刚性ITO相当)、表面粗糙度低等优点。利用该电极制备了柔性有机太阳能电池,1cm2电池效率达到13.6%。相关结果发表在Advanced Functional Materials(DOI:10.1002/adfm.20200...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...